
 Writing a Tiny x86 Bootloader
 December 27, 2016

 All the code/files from this post are available on my Github .

 Edit: After some discussion by the good people on Hacker News , it's become clear that
 when in 16-bit real mode, it's best to use 2-byte registers bp, sp, instead of the 4-byte
 esb, esp. The article and code have been updated to reflect this.

 It might be from being stuck at home with nothing to do over break, or it might be from
 an actual interest in low-level systems design, but I've taken it upon myself to learn
 more about OS implementation, starting with the bootloader. So, here we go. All of this
 information exists in various other places on the web, but there's no better way to learn
 than by teaching, right? Either way, this piece should serve as primer on what exactly a
 bootloader does and how to implement a relatively simple one (compared to a beast like
 GRUB which is ostensibly its own little operating system).

 What is a bootloader?
 When a computer boots up, the job of getting from nothing to a functioning operating
 system involves a number of steps. The first thing that happens on an x86 PC is the
 operation of the BIOS. We'll eschew the discussion of the intricacies of how the BIOS
 works, but here's what you need to know. When you turn your computer on, the
 processor immediately looks at physical address 0xFFFFFFF0 for the BIOS code, which
 is generally on some read-only piece of ROM somewhere in your computer. The BIOS
 then POSTs, and searches for acceptable boot media. The BIOS accepts some medium
 as an acceptable boot device if its boot sector , the first 512 bytes of the disk are
 readable and end in the exact bytes 0x55AA, which constitutes the boot signature for
 the medium. If the BIOS deems some drive bootable, then it loads the first 512 bytes of
 the drive into memory address 0x007C00, and transfers program control to this address
 with a jump instruction to the processor.

 Most modern BIOS programs are pretty robust, for example, if the BIOS recognizes
 several drives with appropriate boot sectors, it will boot from the one with the highest
 pre-assigned priority; which is exactly why most computers default to booting from USB
 rather than hard disk if a bootable USB drive is inserted on boot.

https://github.com/Jophish/tiny-bootstrap
https://news.ycombinator.com/item?id=13268781
https://en.wikipedia.org/wiki/GNU_GRUB

 Typically, the role of the boot sector code is to load a larger, "real" operating system
 stored somewhere else on non-volatile memory. In actuality, this is a multi-step process.
 For example, Master Boot Record , or MBR, is a very common (though now becoming
 more and more deprecated) boot sector standard for partioned storage devices. Since
 the boot sector may contain a maximum of 512 bytes of data, an MBR bootloader often
 simply does the job of passing control to a different, larger bootloader stored
 somewhere else on disk, whose job in turn is to actually load the operating system
 (chain-loading). Right now, though, we won't concern ourselves with all this; the goal
 here isn't to write an operating system (saving that one for another post), but just to get
 the computer to spit something out onto the screen of our choosing.

 It's also important to note that the execution is passed over to bootstrap code while the
 processor is in real mode , rather than protected mode , which means that (among other
 things,) access to all of those great features of operating systems that you know and
 love is out the window. On the other hand, it means that we can directly access the
 BIOS interrupt calls , which offer some neat low-level functionality.

 So, where to begin? I decided to use NASM , a pretty ubiquitous flavor of assembly, for
 this project. As far as testing goes, it's very much possible to just dd the compiled
 assembly onto the first 512 bytes of a USB drive and boot the computer from that, but
 that doesn't have a very fast turnaround, no? Bochs is a neat little x86 IBM-PC
 compatible emulator which has a bunch of useful features; we'll use this for testing.

 Getting Started
 Go ahead and download the NASM compiler and Bochs. I use Arch, so pacman is my
 package manager.

 sudo pacman -S nasm bochs

 Just for fun, let's start by writing a little stack for our bootloader to use. x86 processors
 have a number of segment registers , which are used to store the beggining of a 64k
 segment of memory. In real mode, memory is addressed using a logical address , rather
 than the physical address. The logical address of a piece of memory consists of the 64k
 segment it resides in, as well as its offset from the beginning of that segment. The 64k
 segment of a logical address should be divided by 16, so, given a logical address
 beginning at 64k segment A, with offset B, the reconstructed physical address would be
 A*0x10 + B.

https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Chain_loading
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/BIOS_interrupt_call
https://en.wikipedia.org/wiki/Netwide_Assembler
https://en.wikipedia.org/wiki/Bochs
http://wiki.osdev.org/Segmentation

 For example, the processor has a DS register for the data segment. Since our code
 resides at 0x7C00, the data segment may begin at 0x7C0, which we can set with

 mov ax , 0x7C0
 mov ds , ax

 We have to load the segment into another register (here it's ax) first; we can't directly
 stick it in the segment register. Let's start the storage for the stack directly after the 512
 bytes of the bootloader. Since the bootloader extends from 0x7C00 for 512 bytes to
 0x7E00, the stack segment, SS, will be 0x7E0.

 mov ax , 0x7E0
 mov ss , ax

 On x86 architectures, the stack pointer decreases, so we must set the initial stack
 pointer to a number of bytes past the stack segment equal to the desired size of the
 stack. Since the stack segment can address 64k of memory, let's make an 8k stack, by
 setting SP to 0x2000.

 mov sp , 0x2000

 We're now free to use the standard calling convention in order to safely pass control
 over to different functions. We can use push in order to push caller-saved registers on to
 the stack, pass parameters to the callee again with push , and then use call to save
 the current program counter to the stack, and perform an unconditional jump to the
 given label.

 Alright, now that all that is out of the way, let's figure out a way to clear the screen, move
 the pointer, and write some text. This is where real mode and BIOS interrupt calls come
 in to play. By storing certain registers with certain parameters and then sending a
 particular opcode to the BIOS as an interrupt, we can do a bunch of cool stuff. For
 example, by storing 0x07 in the AH register and sending interrupt code 0x10 to the
 BIOS, we can scroll the window down by a number of rows. See the spec here . Note
 that the registers AH and AL refer to the most and least significant bytes of the 16 bit
 register AX. Thus, we could effectively update both their values at once by simply
 pushing a 16 bit value to AX, however, we'll opt for the clearer approach of updating
 each 1-byte subregister at a time.

http://www.ctyme.com/intr/rb-0097.htm

 If you look at the spec, you'll see that we need to set AH to 0x07, and AL to 0x00. the
 value of register BH refers to the BIOS color attribute , which for our purposes will be
 black background (0x0) behind light-gray (0x7) text, so we must set BH to 0x07.
 Registers CX and DX refer to the subsection of the screen that we want to clear. The
 standard number of character rows/cols here is 25/80, so we set CH and CL to 0x00 to
 set (0,0) as the top left of the screen to clear, and DH as 0x18 = 24, DL as 0x4f = 79.
 Putting this all together in a function, we get the following snippet.

 clearscreen:
 push bp
 mov bp , sp
 pusha

 mov ah , 0x07 ; tells BIOS to scroll down window
 mov al , 0x00 ; clear entire window
 mov bh , 0x07 ; white on black
 mov cx , 0x00 ; specifies top left of screen as (0,0)
 mov dh , 0x18 ; 18h = 24 rows of chars
 mov dl , 0x4f ; 4fh = 79 cols of chars
 int 0x10 ; calls video interrupt

 popa
 mov sp , bp
 pop bp
 ret

 The overhead at the beginning and end of the subroutine allows us to adhere to the
 standard calling convention between caller and callee. pusha and popa push and pop all
 general registers on and off the stack. We save the caller's base pointer (4 bytes), and
 update the base pointer with the new stack pointer. At the very end, we essentially
 mirror this process.

 Nice. Now let's write a subroutine for moving the cursor to an arbitrary (row,col) position
 on the screen. Int 10/AH=02h does this nicely. This subroutine will be slightly different,
 since we'll need to pass it an argument. According to the spec, we must set register DX
 to a two byte value, the first representing the desired row, and second the desired
 column. AH has gotta be 0x02, BH represents the page number we want to move the
 cursor to. This parameter has to do with the fact that the BIOS allows you to draw to
 off-screen pages, in order to facilitate smoother visual transitions by rendering

https://en.wikipedia.org/wiki/BIOS_color_attributes
http://www.ctyme.com/intr/rb-0087.htm

 off-screen content before it is shown to the user. This is called multiple or double
 buffering . We don't really care about this, however, so we'll just use the default page of
 0.

 Putting it all together, we have the following subroutine.

 movecursor:
 push bp
 mov bp , sp
 pusha

 mov dx , [bp + 4] ; get the argument from the stack. |bp| = 2,
 |arg| = 2

 mov ah , 0x02 ; set cursor position
 mov bh , 0x00 ; page 0 - doesn't matter, we're not using

 double-buffering
 int 0x10

 popa
 mov sp , bp
 pop bp
 ret

 The only thing that might look unusual is the mov dx, [bp+4] . This moves the argument
 we passed into the DX register. The reason we offset by 4 is that the contents of bp
 takes up 2 bytes on the stack, and the argument takes up two bytes, so we have to
 offset a total of 4 bytes from the actual address of bp. Note also that the caller has the
 responsibility to clean the stack after the callee returns, which amounts to removing the
 arguments from the top of the stack by moving the stack pointer.

 The final subroutine we want to write is simply one that, given a pointer to the beginning
 of a string, prints that string to the screen beginning at the current cursor position. Using
 the video interrupt code with AH=0Eh works nicely. First off, we can define some data
 and store a pointer to its starting address with something that looks like this.

 msg: db "Oh boy do I sure love assembly!" , 0

 The 0 at the end terminates the string with a null character, so we'll know when the
 string is done. We can reference the address of this string with msg . Then, the rest is

http://www.ctyme.com/intr/rb-0106.htm

 pretty much like what we just saw with movecursor. We use some more labels and a
 conditional jump, but at risk of being too verbose, understanding the code is left as an
 excercise to the reader ;).

 print:
 push bp
 mov bp , sp
 pusha
 mov si , [bp + 4] ; grab the pointer to the data
 mov bh , 0x00 ; page number, 0 again
 mov bl , 0x00 ; foreground color, irrelevant - in text mode
 mov ah , 0x0E ; print character to TTY

 .char:
 mov al , [si] ; get the current char from our pointer

 position
 add si , 1 ; keep incrementing si until we see a null char
 or al , 0
 je .return ; end if the string is done
 int 0x10 ; print the character if we're not done
 jmp .char ; keep looping

 .return:
 popa
 mov sp , bp
 pop bp
 ret

 And that'll just about do it folks. Plugging everything we have so far together, we get the
 following real life bootloader.

 bits 16

 mov ax , 0x07C0
 mov ds , ax
 mov ax , 0x07E0 ; 07E0h = (07C00h+200h)/10h, beginning of stack
 segment.
 mov ss , ax
 mov sp , 0x2000 ; 8k of stack space.

 call clearscreen

 push 0x0000
 call movecursor
 add sp , 2

 push msg
 call print
 add sp , 2

 cli
 hlt

 clearscreen:
 push bp
 mov bp , sp
 pusha

 mov ah , 0x07 ; tells BIOS to scroll down window
 mov al , 0x00 ; clear entire window
 mov bh , 0x07 ; white on black
 mov cx , 0x00 ; specifies top left of screen as (0,0)
 mov dh , 0x18 ; 18h = 24 rows of chars
 mov dl , 0x4f ; 4fh = 79 cols of chars
 int 0x10 ; calls video interrupt

 popa
 mov sp , bp
 pop bp
 ret

 movecursor:
 push bp
 mov bp , sp
 pusha

 mov dx , [bp + 4] ; get the argument from the stack. |bp| = 2,
 |arg| = 2

 mov ah , 0x02 ; set cursor position

 mov bh , 0x00 ; page 0 - doesn't matter, we're not using
 double-buffering

 int 0x10

 popa
 mov sp , bp
 pop bp
 ret

 print:
 push bp
 mov bp , sp
 pusha
 mov si , [bp + 4] ; grab the pointer to the data
 mov bh , 0x00 ; page number, 0 again
 mov bl , 0x00 ; foreground color, irrelevant - in text mode
 mov ah , 0x0E ; print character to TTY

 .char:
 mov al , [si] ; get the current char from our pointer

 position
 add si , 1 ; keep incrementing si until we see a null char
 or al , 0
 je .return ; end if the string is done
 int 0x10 ; print the character if we're not done
 jmp .char ; keep looping

 .return:
 popa
 mov sp , bp
 pop bp
 ret

 msg: db "Oh boy do I sure love assembly!" , 0

 times 510 -(\$-$$) db 0
 dw 0xAA55

 Some things might not be familiar in there. The first line of the program tells the
 assembler that we're working in 16-bit real mode. The lines cli and hlt after we finish
 printing tell the processor not to accept interrupts and to halt processing. Finally,
 remember that the code in a bootsector has to be exactly 512 bytes, ending in 0xAA55?
 The last two lines pad the binary to a length of 510 bytes, and make sure the file ends
 with the appropriate boot signature.

 That's it folks.

 Oh, did you actually want to run the code? Go ahead and save the code above into a
 file, say boot.asm .

 Then, the following command generates a nice binary from our asm bootloader code.

 nasm -f bin boot.asm -o boot.com

 Then, in the same directory, whip up a file called bochsrc.txt , and fill it up with the
 following

 megs: 32
 romimage: file=/usr/share/bochs/BIOS-bochs-latest,

 address=0xfffe0000
 vgaromimage: file=/usr/share/bochs/VGABIOS-lgpl-latest
 floppya: 1_44=boot.com, status=inserted
 boot: a
 log : bochsout.txt
 mouse: enabled=0
 display_library: x, options= "gui_debug"

 This just contains some simple config stuff for Bochs, nothing too fancy. Basically you're
 just telling Bochs that your boot medium is a 1.44 Meg floppy with your binary loaded on
 it. Finally, you can just call

 bochs -f bochsrc.txt

 to run Bochs using the config file you just wrote, and voila , you should see something
 along the lines of this.

 Wow. Pretty boring, huh? If you have a USB drive laying around anywhere, you can do
 something marginally cooler. Plug that puppy in and find out where it lives (use dmesg
 or something). Mine was on /dev/sdb . Using dd , run

 sudo dd if =boot.com of=/dev/sdb bs=512 count=1

 This will copy the first 512 bytes of your bootloader (read: all of it), to the first 512 bytes
 of your USB drive. If you want to make sure everything copied over all well and good,
 you can let if=/dev/sdb and of=test.com , then diff the two files. They should be identical.
 Then, it's just a matter of restarting your computer (and potentially changing boot priority
 to boot from USB first), and you should see the same boring text you see in an emulator
 just minutes ago. Well done.

 It should be said, again, that most real bootloaders are orders of magnitutde more
 complex than this one, however I think this is a pretty good proof of concept/learning
 tool. Hopefully you learned something from this - I certainly did, even if the end result
 was far more underwhelming than I expected it to be.

